
量子力学学习笔记第一章:希尔伯特空间初步
此笔记旨在用我的个人理解复盘量子力学的知识体系,并非标准教科书,可能会有不少错误。傻逼hexo解析不了我的aligned😅
以及可能需要关于拓扑空间、流形、矢量空间的一些基础知识。
第一章 希尔伯特空间初步
本章将从内积空间的定义一路理到狄拉克符号、算符等形式,我个人比较倾向于把概念的数学起源理顺,如果你了解这些可以不看。该部分主要参考梁灿彬老师《微分几何与广义相对论 中册》
1. 内积空间
此节内容会从内积空间开始,定义对偶空间、完备性等概念来建立希尔伯特空间
1.1 内积空间
1.1.1 内积空间的定义
定义内积空间 :复矢量空间
条件(a)(b)表明内积映射对第二槽的线性 ,加上(c)说明它对第一槽是共轭线性的
用此定义类比出实矢量空间的内积很像度规,事实上实空间的内积就是正定度规,但是因为条件(d)所以度规不一定是内积
1.1.2 距离的定义
定义距离 :内积空间
也能定义出以
通常我们会
,它叫做范数
1.2 对偶空间
1.2.1 对偶空间的定义
内积空间
什么叫“连续的线性映射?”首先,线性就是加性(对于任意
,有 )和齐次性(对于任意 和任意标量 ,有 ),而在此基础上,根据定理对于两个赋范向量空间 和 之间的线性映射 , 是连续的、 在 中的一点(例如零向量 )是连续的、 是有界的三个条件互相等价( 这里的“有界”是泛函分析中的有界 )
从对偶空间的定义来说,对偶空间中的对偶矢量其实很像一个函数 ,它接受一个矢量空间中的元素,输出一个复数,因此它的另一种理解方式就是线性泛函 。
显然,
和数乘
(回忆矢量空间与矢量的定义!)
有趣的事实是,微分几何中定义矢量来自流形中某一点的“切空间”,而显然这里谈论的矢量空间则是某种更广义的概念 ,事实上,矢量空间的定义先于具体的流形中的矢量,因为矢量空间只要求了加法和数乘(一个集合配两个映射)。但说实话我对这个定义是不够满意的,拓扑空间、集合、流形、群、矢量空间,这些概念中重复的地方太多,理应有更优美的描述语言。
1.2.2 对偶空间与矢量空间
一个重要的命题给出对偶空间与矢量空间的关系:内积映射
不难看出,有限维情况下
这里来举一个经典的例子说明为什么无穷维不一定到上。考虑所有实数序列中只有有限个非零项的序列所构成的空间。定义内积空间为
,并且对于 和 ,内积为: 构造一个线性泛函 ,它的规则如下: 这个 是一个完全合法的线性泛函(属于 ),但显然,如果 那么 显然不属于内积空间,这说明从矢量空间到对偶空间的映射并不是到上的,但是后面我们会发现这两个” 最多差一层皮 ”(有限个非零项->无限个非零项😋)
1.3 内积空间的完备性与希尔伯特空间
1.3.1 序列极限
设
称
1.3.2 柯西序列
可以证明,收敛的序列一定是柯西序列,但反之不然 。
举例:考虑半开区间
作为矢量空间,距离定义为通常的实数距离 ,我们来看一个序列 ,其中 是正整数。它所有项都在 内,并且是柯西序列,但它不收敛,因为收敛点在区间外。显然这个点就是上面说的“ 一层皮 ”
1.3.3 完备性
内积空间V称为完备的,若其中任一柯西序列收敛
可以证明,对任何不完备内积空间
1.3.4 希尔伯特空间
完备的内积空间叫希尔伯特空间 ,记作
我们常记
,内积 上 连 续 复 变 函 数 ,它显然不完备;但如果把所有不连续但是平方可积的复值函数都包含进去就变成了 ,它则是完备的内积空间。同样能定义出
2. 基底与算符
本节将给出希尔伯特空间中基底与算符的概念,这将让我们能更好地体会到从上面的抽象理论向狄拉克符号的过渡。
2.1 基底
我们重点研究正交归一基。
2.1.1 线性独立
而任意子集称为线性独立若其任意非空有限子集线性独立(任意局部都线性独立)
和普通线性代数定义基本一致。
2.1.2 基底
- 本身线性独立
中任意元素可由其线性表出
就说构成基底。
一般来说我们会假装物理可观测量的全套本征态就能构成基底(其实是个公设)(事实上数学上有行为良好的厄米算符也就是可观测量算符的本征矢量能张成完备基)
2.1.3 正交归一基底
先定义
不难证明
2.1.4 正交归一序列的完备性
事实上我们有公设对于任何物理可观测量
,存在一个对应的自伴算符 。这个算符的本征函数构成一个完备的正交归一基底(在离散谱情况下),或者说它们是完备的且可以用于展开任何态函数(在连续谱情况下,需要更严谨的处理,如广义本征函数)。
2.2 算符
2.2.1 算符的定义
映射
并且若
全体线性算符的集合显然也构成矢量空间,只需要自然定义加法和数乘。
算符分为有界算符和无界算符,我们下面先讨论有界算符。
2.2.2 对偶算符
这样定义出的线性算符
(如果你没太看懂,或许左右两边同时左乘一个
这就是伴随算符的定义。我们能进一步得到定理
又从这不难看出,算符与伴随算符的对应关系是反线性的。更不难看出,
2.2.3 自伴算符
(有界)线性算符称为自伴的或厄密的,若它的伴随算符还是它本身。
对无界算符,自伴性强于厄米性
3. 狄拉克符号
在狄拉克符号里,对每一
一个小推论:
有时我们会写
同样的,我们能定义狄拉克符号的基矢。这里特别给出一个单位算符
它能把我们抽象的态矢
很漂亮的基矢展开。能这么做是因为我们的正交归一基矢能展开右矢,不正交就是0正交就是1
同理,我们还能把算符展开
一个漂亮的矩阵。在这种情况下,不难证明伴随算符就是算符矩阵的转置+共轭。
随后,我们再来给一个无伤大雅的新定义,幺正算符或酉算符
的算符。
4. 无界算符
我们来谈谈之前的小漏洞无界算符 。这个漏洞之所以重要,是因为量子力学中位置算符、动量算符等都是无界的。
4.1 有界与无界
首先要精确定义什么是有界算符 。一个线性算符
如果不存在这样的常数
可以证明,一个在整个希尔伯特空间
例如,动量算符的定义域就不是全希尔伯特空间,因为不是每个平方可积函数都可导。
4.2 定义域
对于无界算符
为了让理论有良好性质,我们通常要求定义域
在一维空间中,动量算符
作用在 空间上。我们不能对任意一个平方可积函数求导,因此 不能是整个 。一个合适的定义域是施瓦茨空间或索伯列夫空间 ,它们都是 中的稠密子空间。
4.3 伴随算符的重新审视
当算符
如果这样的
的构造完全依赖于 。在无界算符的情况下, 和 可能完全不同 。这正是“自伴”和“厄米”两个概念产生分歧的根源。
4.4 厄米算符
现在我们可以精确地定义这两个在无界情况下有显著区别的概念了。设
厄米算符
如果对于所有 ,都有 ,则称 是对称的或厄米的。
用伴随算符的语言来说,这等价于 。这意味着: ( 的定义域是其伴随定义域的子集)- 对于所有
,都有 。
自伴算符
如果 ,则称 是自伴的。这是一个更强的条件,它要求: (定义域必须完全相同)- 对于所有
,都有 。
4.5 一个关键例子
考虑希尔伯特空间
- 如果我们取定义域为
。通过分部积分可以验证, 是一个厄米算符。但计算其伴随算符会发现, 没有任何边界条件限制,因此 。所以 不是自伴的。 - 如果我们改变定义域为
(周期性边界条件)。可以证明,在这种定义域下, 。因此, 不仅是厄米的,还是一个自伴算符。 就是 的一个自伴扩张。
其实这些都涉及到泛函分析中的谱理论了,这里暂时不多做分析,或许以后我会补上。
最后
作为本节的末尾和下一章的开始,同时也是强大数学工具的直接应用,可以尝试证明一个极其重要的关系:不确定性关系
其中
它的推理如下:
- 标题: 量子力学学习笔记第一章:希尔伯特空间初步
- 作者: 辰虎
- 创建于 : 2025-11-07 10:12:22
- 更新于 : 2025-12-12 11:40:35
- 链接: https://www.chenhuhuhu.space/2025/11/07/量子力学学习笔记第一章:希尔伯特空间初步/
- 版权声明: 本文章采用 CC BY-NC-SA 4.0 进行许可。